Main Topics

Molecular control and design for product quality  

Chair: Rosin Oflaherty

Quality by Design (QbD) is a concept applied to the design and development of biopharmaceuticals and manufacturing. It requires building quality into the product and manufacturing process in a systematic, science- and risk-based manner. The adaptation of a harmonized pharmaceutical quality system, incorporating Process Analytical Technology (PAT) and ICH Q8/Q9/Q10 guidelines provides an opportunity for continuous quality improvement to produce safer, more efficacious therapeutics in a cost-effective manner. This session will focus on recent advances on QbD approaches. The panel will include experts from regulatory bodies and the biopharmaceutical sector. 


Bioprocess Intensification

Chair: Michael Butler

Bioprocess Intensification involves enhanced cell density and productivity at a scale that enables higher efficiencies that are unachievable in simple batch process.  Such intensification is generally associated with continuous bioprocesses with enhanced productivities achieved through nutrient feeding or perfusion.  Continuous manufacturing processes using novel procedures of intensification during the bioprocess can allow efficient and economic ways of producing biotherapeutics.  The possibilities of linking continuous upstream and downstream processing would be a major step forward for the bioindustry.  This session will explore these possibilities and consider some of the process bottlenecks that need to be overcome.


Protein Engineering 

Chair: Carlos Bosque

The engineering and production of proteins are crucial components of the biopharmaceutical industry. Over the last decades, innovative protein engineering have led to the development of multiple classes of therapeutic proteins including antibodies, bispecifics, fusion proteins, and many others. Protein engineering applications include both rational design and directed evolution to generate proteins with desired physicochemical or functional characteristics. This session will focus on recent progress and examples on the field of protein engineering.  For example, this session will cover discussions on: novel protein design, antibody design to create novel antibodies or antibodies with optimized Fab or Fc-mediated functions, optimization of protein stability, generation of antibody-drug conjugates (ADCs), glycoengeeniring to optimize protein structure or function, directed protein evolution, etc. 


Expression Systems  

Chair: Yves Durocher, co-chair René Hubert

Bioprocess Intensification involves enhanced cell density and productivity at a scale that enables higher efficiencies that are unachievable in simple batch process.  Such intensification is generally associated with continuous bioprocesses with enhanced productivities achieved through nutrient feeding or perfusion.  Continuous manufacturing processes using novel procedures of intensification during the bioprocess can allow efficient and economic ways of producing biotherapeutics.  The possibilities of linking continuous upstream and downstream processing would be a major step forward for the bioindustry.  This session will explore these possibilities and consider some of the process bottlenecks that need to be overcome.


Cell Engineering and Genome Editing. 

Chair: Helene Faustrup Kildegaard, co-chair Kerstin Otte

 There is a continuous need for recombinant proteins for basic biology and industrial applications. Often, high yield of high-quality proteins is demanded and to develop superior production systems, cell line engineering and genome editing is often applied. Increased understanding of basic biology underlying high recombinant protein production and control of gene expression has suggested engineering strategies to overcome bottlenecks, which together with synthetic biology and high-throughput screening technologies has significantly advanced cell line development. This session will address all aspects and novel technologies of cell line engineering including host cell engineering, vector engineering, cell line generation including single cell cloning, selection, screening and characterization, enhancement of clone stability, markers of productivity and advances within synthetic biology including genome editing and site-specific integration.   


Advances in production of biologics

Chair: Francesc Gòdia

New advances in Precision Medicine are opening new horizons in healthcare. Cell therapies are in the front edge of new therapies to combat diseases like cancer through the immune system, for example by CAR-T or TIL approaches. The developments in this area are moving very rapidly and involve elements of cell culture, cell transfection, expansion, selection, equipment or GMP manufacturing among others. MSc and i-PSC culture are also playing a major role in the development of new cellular regenerative therapies. When considering tissue engineering, the biotechnology aspects merge with nanotechnologies and material sciences to develop appropriate scaffolds, for example using 3D printing and understand the cellular behaviour in them, for example in to guide cells differentiation. Finally, characterization of the products obtained is also a challenge in this area.


Application of Big Data and Automation

Chairs: Nathan Lewis, Collin Clarke

In vivo, animal cells have the capacity to produce and secrete proteins at an order of magnitude higher than seen in leading clones in industrial bioprocesses. Furthermore, each protein has its set of post-translational modifications that can be relevant to its function. Novel technologies have emerged that are elucidating the mechanisms underlying protein secretion and identifying approaches to increase cell productivity, boost protein yields in bioprocessing, and control product quality. These include high throughput screens, omics data, systems biology models and machine learning. Speakers in this session will present work on technologies enabling the development of novel strategies for enhancing and controlling protein production through the generation and analysis of biological big data. 

 


Cell-based vaccines and viral particles production.

Chair: Laura Cervera

Vaccination is one of the most successful approaches for human health protection and the recent Covid-19 pandemic has highlighted its importance. Cell-based vaccines are gaining importance with the irruption of new recombinant alternatives. The same trend is occurring for viral particles used, for example, in gene therapy as potential treatment for severe pathologies. The recent events regarding the Covid-19 pandemic have evidenced how critical is the manufacturing of the viral-derived vaccines and viral particles. In this session we will cover the key aspects related to their design, production and purification putting special interest in intensified and flexible platforms.

Important Dates

Abstract submission opening
Now Open

Registration opening
Now Open

Abstract submission deadline 
June 15, 2021 Submission is still open for poster presentation

Notice of acceptance
coming soon

Early bird registration
August 10, 2021

Conference
September 13- 16, 2021

Subscribe to the PEACE 2021 newsletter